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Amplitude equations for extended discrete systems: A study of an antiferromagnetic spin chain
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We study the effect of the dynamical degrees of freedom resulting from the lattice structure of an antifer-
romagnet on pattern forming bifurcations. They are examined in a one-dimensional chain of damped and
driven classical spin oscillators. In addition to stationary states where all spins are fguak&ferromagnetic
statg, it exhibits states where the spins are lined up on two sublattmascollinear state Besides showing
instabilities against large scale perturbations, short wavelengths of the order of the lattice constant become
critical even for weak driving fields. A general formalism admitting a dynamical description of discrete
oscillator chains in the weakly nonlinear regime beyond the instabilities is developed. The ensuing amplitude
equation allows the examination of the formation of patterns in this domain. Special emphasis is laid on
instabilities of higher codimension. A codimension-3 bifurcation where all wave numbers become critical
simultaneously implies a direct transition to turbulen&1063-651X98)04608-X]

PACS numbegps): 05.50+q, 75.10.Hk, 02.30.Mv

[. INTRODUCTION namics and the investigation of solitof&-10. Secondly, a
major obstacle lies in the experimentally difficult resolution
Numerous experimental and theoretical investigations obf small variations of the magnetization in spatiotemporal
the ferromagnetic response to time dependent external fielgsatterns, using, e.g., the Faraday effect in thin ferrimagnetic
have made driven magnets a paradigm of nonlinear sciencélms. This method is well establishdd0] to visualize do-
Following the observation by Bloembergen, Damon, andmain structures, moving domain walls or solitons where the
Wang [1] of broadened power absorption spectra of ferritconsiderable changes of the magnetization cause observable
samples strongly driven by microwaves, theoretical treatrotations of the polarization of light. Also precession angles
ments[2] have explained the emergence of a new state chain ferrimagnetic resonance were measuretl. However, to
acterized by pairs of spin waves above a first instabilityour knowledge visualizing the slow variations of an envelope
threshold. Experimentally observed auto-oscillations haveharacteristic for dissipative pattern formation has not yet
been interpreted as limit cycles emanating from a secondaryeen achieved. Rapid pattern switching in two dimensions
Hopf bifurcation of this state. Driving fields well above this might also impede the observation.
threshold have led to intricate bifurcation phenomena includ- Still, in strongly driven magnets nonequilibrium pattern
ing a period doubling route to chaos that has been reprdiormation should be observable; both the Faraday effect and
duced in idealized model systerfi3]. In detecting the re- the linewidth are enhanced by an appropriate dotting, which
sponse of the whole sample and not resolving spatiaeems to be a promising way to observe one and two dimen-
patterns, such experiments are restricted to temporal dynarsional patterns in thin magnetic films.
ics. In formal descriptions, simplifications of the complex
Empirical and formal similarities of driven magnetic sys- mechanisms present in real magnets are indispensable. The-
tems to fluids suggest the occurrence of turbulent s{akes oretical approaches are based, e.g., on3hteory or the
and long scale patterri$,6] in the magnetization. Funda- Landau-Lifshitz equation. Even though the microscopic de-
mental theoretical studies taking the nonlocal dipolar ternscription of magnetism is purely quantum mechanical, mac-
into account even predict pattern switching phenomena imoscopic dynamical properties are described appropriately by
ferromagnetic filmg7]. classical equations of motion. The Landau-Lifshitz equation
But unlike fluids or liquid crystals, magnetism has not yetwas originally a purely phenomenological description of the
become representative for nonequilibrium pattern formationdynamics of the magnetization density of a ferromagnet;
The reason for this seems to be twofold: firstly, availablenow, somewhat in analogy to Navier-Stokes in fluid mechan-
driving field strengths require samples with relatively smallics, there are sound microscopic derivatigtg] including
linewidths. In this case, the complex Ginzburg-Landau equaassessments of its applicability.
tion typically obtained by perturbation theoretic expansions For systems consisting of two or mof&3] sublattices
is valid on extremely long time scales; beyond a small regiorsuch as antiferromagnets and weak ferromaghti$ the
above threshold it may be studied in the limit of the nonlin- situation is even more complicated. Each sublattice may be
ear Schrdinger equation. Consequently, weakly dampeddescribed separately by a classical Landau-Lifshitz equation
systems are frequently approximated by Hamiltonian def14]. The effective field at each lattice site contains a cou-
scriptions; such systems have been examined in thermodyling term to the nearest neighbors on the other sublattice.
The nonlocal dipolar term may be neglected if the resulting
magnetization is weak.
*FAX: +49 6151 16 4165. Electronic address: Microscopically, discrete models appear to be the most
benno@arnold.fkp.physik.th-darmstadt.de adequate description for antiferromagnetism of ionic crystals
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with localized atomic momenta. Even then, working from cation where all wavelengths become critical engendering
the assumption that neighboring spins are approximately iturbulent motion is discussed in Sec. VI.

the same state, a continuum transition is often performed in
the Hamiltonian[8,9] or in the primary Landau-Lifshitz
equation[15-18. This assumption breaks down if there are
short wavelength excitations. We will show that this can be As a model of a microwave-driven one-dimensional anti-
the case for damped and driven systems. We describe offrromagnet we study a one-dimensional lattice of coupled
system as a set of coupled ordinary differential equationsglassical spin oscillatorss, governed by the dissipative

Il. THE SYSTEM

thus taking the discreteness effects into account. Landau-Lifshitz equation:
We formulate a model system that includes the basic
physical features of driven antiferromagnets, but is still -S,=S,XH,+T'S,X(S,xH,) (1)

simple enough to admit analytical studies pattern formation
mechgmsms. The dynamics is r_estrlctgd to one spatlal d'l]nder the influence of the effective field
mension reflecting a strongly anisotropic exchange interac-
tion in the crystal. The emphasis is put on bifurcational stud- _
ies in a wide range of parameter space that may serve as a Hn=Bo(&C0s wt+e;sin wt) + B, +J(S,-1+S11) -
guide for studies specified to particular materials. 2
To understand spatiotemporal dynamics near an instabil-
ity threshold, a systematic reduction of the degrees of freeSis a three dimensional real vector. The equation of motion
dom is often more helpful than the computation of particularconserves the modulus & we set|S|=1. Classical spins
solutions. This reduction transforms the original equation ofnay be viewed as averaged magnetic momenta of several
motion to a canonic amplitude equation, whose form is dequantum mechanical spins, e.g., the spins of a sublattice in
termined entirely by the type of instability under consider-an antiferromagnet or the spins of a film in a superlattice
ation. The coefficients of the reduced equation are functiong22]. The lattice-structure of the crystal is reflected in the
of the original physical parameters. Different physical sys-discreteness of the chain. This admits to describe the spon-
tems may therefore be treated in a unifying manner. Suckaneous formation of sublattices in a uniform system.
reductions are well established as center manifold reductions The system is driven by a time dependent figjgrotating
in low dimensional systemEl9] and as solvability condi- perpendicularly to the stationary external figdd. J<O is
tions within a multiple scale perturbation theory of partial the antiferromagnetic Heisenberg exchange consfaistthe
differential equations for spatially extended systdi2(. coefficient of the Landau-Lifshitz damping term. All these
While our system itself is discrete, its slowly varying am- parameters are real.
plitude admits a description by partial differential equations. The explicit time dependence can be eliminated by intro-
We present a derivation of amplitude equations for quiteducing a rotating coordinate systeng’',=e,Ccoswt
general chains of coupled oscillators. Applying this formal- + gsin wt,e'y= —gsin wt+e,coswt,e’,=¢,. It leads to
ism to the magnetic system yields all the parameters of the
ensuing Ginzburg-Landau equation, which is well studied in
the field of pattern formatiof21]. This analysis provides a
nonlinear characterization of the dynamics beyond the insta-
bilities. Our formulas for the coefficients of the amplitude with
equation can be easily used for all locally coupled oscillator
chains elucidating some universal aspects of magnetic pat- H,=Boet+B,e,+I(S,_1+Sh11)- (4)
tern formation.

_The one dimensional spin chain described in Sec. Il cOnyjaking use of the conservation of modulus to reduce the
tains a Landau-Lifshitz damping term and a rotating driving, mber of field equations and applying the stereographic

field. Bifurcations of the quasiferromagnetic state are StUdie‘E)rojection into the complex plare=(S,+iS,)/(1+S,) we
in Sec. lll. Noncollinear stationary states, in which the mag y

o 4 X “obtain the equation of motion for the oscillator with index
netization vectors of both sublattices deviate from the anti-

parallel alignment, are computed in Appendix A. Their most 5
interesting instability represents a splitting of one sublattice 7 —(i-T)Bze—iwz— (i —T) =2(1— 22
into two sublattices, each of which can be described by a n=t Bz~ Tz ) 2 ( "
smooth function. The corresponding bifurcation scenario is

ied i i i - - 1+2z,z
studied in Sec. IV. In Appendix B the loci of these bifurca I =T 20— 20, 1) nfn+1

—S, =S X (Hp— w&) + 'S, X (S, X H,) ©)

tions in parameter space are determined explicitly for weak Zni1Z50q

damping. The survey of the dynamics beyond the instabili-

ties is carried out in Sec. V with the help of the general 1+2z,2%_,

amplitude equation formalism presented in Appendix C. For +I(-T)(z,—2n-1) T 6)
the application to the antiferromagetic spin chain, the formal- 1+zy-17y

ism is generalized to chains of two alternating types of os-

cillators. This is done in a parity-preserving way, which is  The system has states where the spins are arranged in one
developed from a discussion of frequently used continuunor two sublattices. In the following sections we will discuss
approximations of antiferromagnet&ppendix D. A bifur-  their bifurcation scenario.
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IIl. BIFURCATIONS OF THE QUASIFERROMAGNETIC , , , ,
STATE | %o

A stationary state where all spins are parallg|< S, for
all n,m) is called a quasiferromagnetic state. In this case the
Heisenberg coupling terr8,X S, is identically zero and 1.51
consequently such states are just the stationary solutions of

the equation of motion of a single spin Neso

- . . . BO 2
z=(|—F)Bzz—uoz—(l—l“)?(l—z ). (6)
0.5f
There are two such states
(i—-T)B,~iw+&rp 0 ' . ‘ : '
Zaim= — } 7 0 0.2 0.4 06 0.8 T B
A/B (| _ F)Bo ’ ( ) z
L FIG. 1. Bifurcation scenario fod=—-0.49w=11"=0.01. A
where we have used the abbreviation trivial fixed point (all spins are parallgl which is stable in region
. - —> - 5 3.0, becomes unstable at lind/,. Inside the triangular structure
éws= N[ —T)B,—iw]*+[(i—T)Bol*. ) whose borders are saddle-node lines SN three nontrivial fixed

. . . points exist, outside there is only one. In the shaded areas, exactly
The root is defined so that Rg=>0,Re{p<0. We willnow "o point is stable.

discuss instabilities of these solutions. The eigenvalues of a

linear stability analysis are for all n are called noncollinear states. They describe two

_ - _ homogeneously magnetized sublattices which are usually
Mp1(K)=Eap +23(1 —1)(1 = cosk), © neither parallel nor antiparalldlFig. 3@]. Such new 2-
M wea(K) =N avg1(K) (10) sublattice states are generated by the driving field. The cant-
AB2 A/BILRJ ing is provoked by the driving field balancing the antiferro-
magnetic interaction. All these solutions can be determined

k is the wave vector of the perturbations. The fixed pdir$
P P exactly with the help of the third order polynomial

always unstable, while the fixed poil can be stable or
unstable. The real part of the eigenvalues has extrenka at
=0 andk= 7. For antiferromagnetic coupling<<O the real
part of the eigenvalues, Res(k), is maximal atk=7 and +T2B2-16J%(1+T?)m]?m
there is a wave instability when 13

IMw?(1+m)%(B3—1632m)=[(1+T?)B3+ (B,— )2

Re\g(m)=Re &z—4JI'=0 (17
for the square magnetization= %(S,+ Sz)? (see Appendix

if Im &g+ 4J+0. This bifurcation takes place at the bound- A). Oncem is known, S, and Sy can be calculated. Due to
ary of the Brillouin zone and can be regarded as a Hopthe translational symmetry of Eql), each solution of Eq.

bifurcation of a related 2-spin systel@]. Above this insta- (13) is twofold degenerate:

bility, the lattice splits up into two sublattices. Two neigh-

boring spins are excited with opposite phasasS, Sn=Sa,  Sn+1=S,
=—AS;1.
This bifurcation corresponds to ling/, in Fig. 1. In re- Sn=%%, Sm+1=Sa- (14

gion X, above lineW, there is one stable and one unstable
quasiferromagnetic state. The strong external field neutraln that sense there may be one or three nontrivial states. We
izes the antiferromagnetic interaction and stabilizes the enelOW compute expressions for the saddle-node lines in ques-
getically unfavorable parallel orientation. Beldi, the an-  tion. If an extremum of the polynomial.3) considered as a
tiferromagnetic  interaction  predominates and  thefunction of m is zero, new fixed points are created in a
quasiferromagnetic states are both unstable. saddle-node bifurcation. The resulting bifurcation lines SN
For B2=16J2+12B2 andw=(1+T'?)B, the eigenvalues are drawn in Figs. 1 and 2 in a parameter plane that is
X1, vanish altogethefpointa in Fig. 1). A nonlinear analy- spanned by the driving field and static field. They meet in the

sis of this bifurcation reveals saddle-node bifurcations of secP0intsa,ca,c, and form the boundaries of a region in which
ondary fixed point§3] and also Hopf bifurcations and global three noncollinear states coexist. Outside this region there is

bifurcations[23]. Instabilities of these noncollinear states far ©Nly one noncollinear state. Inside, the states may be num-
from this bifurcation will be studied in the next section. ~ bered in increasing order of the square magnetization
that sense, a saddle-node bifurcation of solutions 1 and 2

forms the bottom of the triangular structure, while its left and
right sides correspond to saddle-node bifurcations of the
Stationary solutions of Eq1) with the property fixed points 2 and 3.
Magnetic resonance techniques commonly use weak driv-
Son=Sa,S2n+1=S (12)  ing fields and materials with correspondingly weak dissipa-

IV. BIFURCATIONS OF NONCOLLINEAR STATES
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Bo— . . , mial itself and its first and second derivative with respect to
o4r l m must be zero. An expansion in termslofin lowest order
yields

0.351
i 1024\]2 2

0.3

(15
B5=8(B,~ w)?
| for the two cusp pointg, andc, in Figs. 2 and 5. At

0zl B3=16J%+12B2,

(16)

o w=(1+T?)B,
0.94 0.96 0.98 1 1.02 1.04 1.06 Bz

the polynomial and its first derivative vanishesnat 1. In
FIG. 2. Section of Fig. 1 with small driving fields near reso- this situation the spins of both sublattices become parallel.

nance containing the most interesting bifurcations. The saddle-nod8t this degenerate bifurcation poifipoint a in Fig. 1) the

lines SN,,SN,z,, SN,3, bound a region with three nontrivial fixed noncollinear states 2 and 3 bifurcate from the ferromagnetic

points. They are labeled in the order of their magnetizations; thestate(see Sec. Il an@i3]).

indices indicate which one is involved in the corresponding bifur- At the saddle-node bifurcation the discriminant of third-

cations.c, andc, are cusp points. In the shaded a®aa non-  order polynomial(13) vanishes; the polynomial has a single

trivial stable stationary state exists. It is bounded by subcritical hardaqnd a double root. Then fd, andB,— w~F1/2,

mode instabilities HM, ,HM;, and a subcritical soft mode line

SM;. This line becomes physically irrelevant after intersecting

HM., and HM,,. At the codimension-2 pointg;, and X,3—on

eigenvalue vanishes, two others are purely imaginary—the saddle-

node and the hard mode touch each otluigs. and d,; represent +8(B,— w)*—20Bj(B,~ w)>~Bj]=0 (17

Arnold-Takens-Bogdanov bifurcations. In the shaded .

which is bounded by SN, SNyz,, HMj; and lineWs,, soluti?r%z hoI.ds. ForB.Z—w<1"1’2 (17) is solyed byBg=64"?w??,

is stable. AW there are imaginary eigenvalues fqr= /2. At the which describes the saddle-node line;$&t the bottom. The

points bcay, solution 3 s critical fork,=0 and fork,=/2. The lateral saddle-node lines $Ncan be approximated bBj

broken part of line HM does not correspond to a global maximum =4J2I'?w?/(B,— w)?+ (B,— w)?.

of an eigenvalue &it.=0. For a further study of the instabilities of the noncollinear
states, it is useful to apply the stereographic projection in the
direction of S+ Sz as outlined in Appendix A. It is possible

tion. Therefore, analytical results in this limit have a highto relate stationary states &,,,S,,., to real numberg,,

relevance; we will first determine the corner points of this=x,z,,,,=—Xx on the complex plane. The dynamics of the

structure. For a cusp bifurcation, the unique solution of thecomplex deviations Az from equilibrium (z,,=X

polynomial is an inflection point. Consequently, the polyno-+Az,,,z,,.1= —X+AZ,,.1) iS governed by

(B,— 0) B2+ (B,— )?]°+412w?T?[ 641%wT 2

2

AZyn=+2(Q'+iQ")XAZyn+(Q' +iQ")AZ,—4J(i— 1“) A22n+J(| )| (2x+AZpy— AZop1 1)

14+ (X+AZ) (—X+AZE . )) 1+ (X+AZ,) (—X+AZE ) 1—x?
2n 2n+1 +(2X+A22n_A22n_1) 2n 2n—1 —4x ’ (18)
1+ (—=X+AZynp1)(—X+AZE L)) 1+ (—X+AZyn_1)(—X+AZ5,_)) 1+x?
. 1-x?
A22n+1=—2(Q’+iQ”)XA22n+1+(Q’+iQ”)AZ§n+1—4J(i—F)1+X2A22n+1—J(i—F) (2X=AZpn1 1+ AZpn 4 2)
1+ (= X+ Az ) (X+AZE ) 1+ (—X+ Az ) (X+AZE) 1-x2
> 2n+1 2n+2 +(2X_A22n+1+A22n) ( 2n+1 2n/ X . (19)
1+ (X+AZpn, o) (X+AZS,L ) 1+ (X+AZpy) (X+AZ5,) 1+x2
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Q’,Q",x are functions of the external fieldsee Appendix A Q'x=-JT
for their definitior). Due to the different orientation of the

sublatticesS,, andS;, 41 in the stationary state the variables |5 critical eigenvectors

Re Az,Im Az at the lattice sitesi2 and 2n+1 are governed

by different differential equations. Consequently, the system 1
can be regarded as a chain of two different types of nonlinear

(24)

two-dimensional oscillators. They may be combined in a

four-dimensional vector field.

For the stability analysis we linearize the equations of

motion (18),(19), insert the Bloch wave

ik2n

u/uf=— (25

2| o

have the eigenvaluea==*i2(—Q"x+J). Consequently,

ReAz,, u,e ) - : ; - ¢ _
ikzn neighboring spins on one sublattice are excited with opposite
Im Az,, u,e hases
= . +c.c. (20 P
ReAzZnJrl u3e'k(2”+1> -
ImAzy,41 u4eik(2n+1) ASZn+2:ASZne2|kC: —AS, (26)
and obtain the Jacobian while spins of the other sublattice remain unchanged. In
analogy to the instability11) at k.= 7, it describes a split-
Q'x+Jr —Q"x+J —JI'q cosk J cosk ting of a sublattice into two new sublatticgsig. 3(c)].
" , If the condition for imaginary eigenvalues is written in the
Q™x=J Q'x+Jr Jgq cosk I cosk form (23), HM3 and W5 correspond taly+d,+d,=0 and
—JI'gcosk Jcosk —Q'x+JI Q"x+J do—d,+d,=0, respectively. At the intersection poirt,
Jgcosk  Jr cosk  —Q"x—J —Q'x+JT there are two pairs of imaginary eigenvalueskg+0 and
(21 k.= /2. They correspond tdy,+d,=0, d,=0

with q=8x?%/(1+x?)?—1 and—1=<q=<1. The wave vector
k. is restricted to the Brillouin zong— 7/2,7/2]. The coef-

A patrticularly interesting bifurcation of codimension 3 is
given ifdg=d,=d,=0. At this point @c in Fig. 4) the real
part of two eigenvalues vanishes for kll. This bifurcation

will be studied in Sec. V.
It is worthwhile to determine the position of HMandWs
at exact resonand®,— »=0. In Appendix B we find

J2
=16J2 1-—
B2

ficients of the characteristic polynomial

A+ KA+ Ko N2+ KA+ Kg=0 (22

are given explicitly in Appendix B. Because of the nearest-

neighbor coupling, the coefficients of EQ2) depend on the

wave numbek only via cos X and cos . z
The conditionKy=0 for one vanishing eigenvalue &

=0 yields the saddle-node bifurcations that were described

above. A zero eigenvalue kt+# 0 indicates a soft-mode in-

stability. Purely imaginary eigenvalues are obtained(ff /2n1 Zﬂ” /2n+3 /n

K1K2K3+KOK3 0 andK;/K3>0 hold. Fork,=0 and 2n 2n2 | 2n+4

k 750 the InStablllty is deSIgnated as hard mode and wave
2n-1 2n+1 2n+3 2n+5

instability, respectively(Fig. 3). All these bifurcation condi-
tions have the form
L L 2n+2 L 2n+4 L
2n-1 2n+1 ‘ 2n+3 n+5

\ 2n-2 \ 2n \2n+2 2n+4
which fixed point 3 is stable, has the two saddle-node lines
SNpz, and SNy, , the hard-mode line HMand the lineW;  FiG. 3. Sketch of a noncolinear sta®®, a hard mode instability
as its poundanes. Thg last line represents a wave instability), and of the instability; (c): Neighboring spinsS,,, andS,, .
occurring atkk,= /2 with w# 0. As cosk,=0, it takes place get opposite phaseS;, andS,,, , are again parallel. The sublattice
for with odd indices remains unchanged.

(27)

do+d,cos X+d,cos «=0. (23

The characteristic polynomial can be studied analytically in
part. It reveals an intricate bifurcation scenario. Here we give
an overview of our results while we defer their derivation to
Appendix B.

Within the shaded area%; andX 5 in Fig. 2 there is one
stable stationary state, while outside all states are unstable.
Therefore, noncollinear states are stable for sufficiently
strong driving fields3; is bounded by the two hard-mode
instabilities HM,, and HM,, and the soft-mode instability
SM; (the index 1 refers to fixed point)1The areas, in




SNosp
0.9 |

W,(J=-0.475)
0.8
0.7}
WyJ=-0.495)
0.6}

0.5}
0.4}

0.3

0.2r

B,

FIG. 4. NearB§—4J2=0 the wave instabilityW; invades the
stability regionS; rapidly. The lineswW; are plotted for several
coupling parameters—0.5<J<-0.4, SN and HM only for

J=—-0.49w=11"=0.01. Where the lines are broken, the critical

eigenvalue is not a global maximum of the spectrum. Ber
—0.4, solution 3 is stable only in domain VI, fdr=—0.475 it is
stable in V and VI, etc. Fod=—0.5 it is stable in I-VI and/\,
does not appeahf anddw are codimension-2 lines in th&,-B,-J
parameter space. On the right side of the degeneration gwinthe
bifurcation W5 is subcritical while on the left side obf it
is Benjamin-Feir unstabledw and bf meet in the pointgc
(J=—0.4975), which is critical for all wave numbers.

for the resonance point oW,. This point is near to the
maximum of this bifurcation lindsee Figs. 4 and)5The
point of intersection of HM and the resonance line is given
by

Bj=641°T"2w? (29

and is near to the minimum value of the bifurcation line.
These formulas reveal a resonance phenomenon between the

internal exchange field and the external static fiel&,.

B. RUMPF AND H. SAUERMANN
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sitive to variations of] (they are plotted fod=—0.49 in
Fig. 4), line W3 is highly sensitive to variations aof near
4J?=B2. Above this thresholdV; invades the domain of
existence of fixed point 3 strongly, thereby destabilizing it in
a wide rang€Fig. 4). In experimental situations whedeis a
material constant, the same can be achieved by vaming
and w.

Finally as is shown in Appendix B near resonance some
interesting codimension two bifurcations occur:

Line HM;, meets line Si, in point d;,. This case is
characterized by the linear part

0 1
0 0
and represents an Arnold-Takens-Bogdanov bifurcdtlh

Line HM,, meets line SK, in pointX,,. The correspond-
ing linear part is

(29

0O O 0
0 0 —w (30
0 w 0

Following the hard-mode line HMof fixed point 2(which is
always unstableone reaches the poirg;, which is again of
the type(30). The pointsx,; on the saddle-node line S}
andd,; on the saddle-node line SH are connected by the
hard-mode line HM of fixed point 3;d,5 is again of the type
(29).

For small values of’, dy, is located at(from Ky=0K,
=0)

2

B0
B,B,—w)=— 3 (31)
64 2w2J2=B4, (32

While the saddle-node and hard-mode lines are quite insemwhile x, is given by (from Ko=0K2— K K,K;+KK3

=0)

7
_BS

BZ(BZ_w): - 8

(33

and again Eq(32). These conditions are asymptotically ex-
act forI',By,B,— w—0 and they excellently agree with the
numerical results fof'=0.01 (Fig. 5).

In the context of pattern formation, the lines HM
HM,,, SM;, HM3, andW; are relevant because they con-
cern stable solutions. The physical question is now whether
these instabilities lead to stable short and long scale patterns.

V. AMPLITUDE EQUATIONS FOR THE WEAKLY
NONLINEAR REGIME

The dynamics beyond the instabilities is governed by non-

FIG. 5. Asymptotic behavior of codimension-2 bifurcations for linear terms. At threshold, a single mode is critical. It repre-

weak damping. The solid lines in tH&,-B, plane atl'=0.01 are

sents an ideal pattern. Slightly above threshold adjacent

the bifurcation lines of Fig. 2. The dotted lines show the analyticalmodes become unstable, also giving rise to slow spatial and

expressions given in the text for the codimension-2 bifurcatigns
Cp, &, X12. dy, and the resonance poirtis andwr of HM; andWj,
as functions of",B,,B, .

temporal modulations

A(Ty, .. bq, .. )elkenteoly e, (34)
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u. is the critical eigenvectofcf. Eq. (C14), Appendix J. 0.01
The dynamics of these structures is described by amplitude
equations. A systematic general derivation for amplitude 0.05¢
equations of oscillator chains is established in Appendix C. It
reduces the dynamical behavior of the dissipative spin sys- Of cimmrmmmemiinizs
tem to the Ginzburg-Landau equation
-0.05

A= uA+Da2A+rA%A* . (35) o1l

The real part of the diffusion coefficiem = — 3 9°\/9x? is -0.15}

positive. For a negative real part ofthe equation saturates.
Rescaling amplitude, phase, space, and time coordinates ap-
propriately, one obtains

0.998 0.999 1 1.001 1002 B,

) FIG. 6. The real and imaginary parts of the third order coeffi-
A=uA+(1+ iCl)(?)Z(A_(l_iCS)AZA* (36) cient of W5 for J=—0.49, r’, r”, andcg=—r"/r’ vanish simul-
taneously.

with ¢;=Im (D)/Re (D) andcs=—Im (r)/Re (r). ) S N )

The amplitude equation contains two decisive pieces of In particular considering instability24), which occurs at
information of the pattern formation beyond the instability: the margin of the Brillouin zone and concerns a system of
Firstly, it settles the stability of the short scale patterns linkedWO Sublattices, its excitations may be written[asing Eg.
to the critical eigenvector’'s wave number. Secondly, depend(25)]
ing on its coefficients it categorizes the long scale patterns
under the solutions of the complex Ginzburg-Landau equa- 1/1
tion [21]. Traveling waves as its most simple solutions A(eZn)—( . )ei(”’2><2“)+c.c., (39
should be observable as stripe patterns under magneto- 211
optical observation.

Although neighboring spins have opposite phases at the
instability (11), their amplitude is a smooth function of the A(e(2n+1))
space coordinate near threshold. The amplitude equation
saturates; the coefficients acg=—1/T",c3=1/MT". Because
of 1—cyc5=1+1/'?>0, there is no Benjamin-Feir instabil- As a consequence, only the even numbered sublattice is in-
ity. volved. This splits into two new sublattices. Neighboring

Any attempt to derive amplitude equation for the noncol-spins on this sublattice acquire opposite phases. The forma-
linear case starting directly from E@19) would be hope- tion of more then two sublattices is a well-known experience
lessly complicated because of the algebraic structure of thgy magnetostatics, e.g., in hidden antiferromagnetism. Inter-
four-dimensional field. In addition, spins on neighboring lat-estingly, such a phenomenon is encountered here as a dy-
tice sites, i.e., spins belonging to different sublattices, argyamical response to a homogeneously driving field.
influenced by different effective fields. Consequently, two The simplicity of the critical eigenvectdB8), (38) makes

different sorts of oscillators are arranged alternately on theye computation of the third order coefficient much eadier:
chain. A general derivation for the cofficients of the ampli- (C33 simplifies andA (C34) vanishes altogether. The re-
tude equation is given in Appendix C. This formalism is maining terms have been computed numerically.
transferred to chains of two different sorts of oscillators in" 11 eal and imaginary parts of the third order coefficient
Appendix D. fthe i . hold of W5 are plotted in Fig. 6 fod= —0.49. The sign of the real

As a consequence of the inversion symmeXry=0 holds . ¢ the third order coefficient changesBit=w (dw in
for bifurcations in the center and at the boundary of the B”"Fig. 6: this codimension-2 bifurcation is plotted as a line
louin zone; for soft-mode bifurcations this is true anyway., .+, tﬁe parameted in Fig. 4. In additionc, vanishes at
Hence the drift velocity(C19) is zero. The diffusion coeffi- dw. For B,<w the bifurcationWs is supercritical (Re

" z

cient follows by differentiating Ec(22) twice =r'<0); the third order guarantees saturation so that the
perturbation theory is valid. FdB,>w it is subcritical and
Ko+ MK+ N2K S+ N 3K the dynamics leaves the vicinity of the stationary state.
== Kot 2 Kot 32Kt A3 (37 Furthermore a Benjamin-Feir instability takes place at
1 2 3 c,c3=1 (bf has codimension 2 and is again plotted as a line
in Fig. 4). Consequently stable plane wave solutions Wear
and insertingh =i w=y— K;/K3. are only possible between the lines and dw. Figure 4
The third order coefficient, which is responsible for satu-shows that the Benjamin-Feir stable bifurcatidfy is also
ration, is influenced by the quadratic and cubic terms of thexbtained for small driving fields. In this domain, ideal and
original equation of motion. They are contained in the ten-periodically modulated 3-sublattice solutions are stable,
sorsC®# Dﬁj{gk'y of Appendix C, which are needed in order while in the Benjamin-Feir-unstable domain one expects

ihj
to compute the coefficients. phase turbulence as long scale pattern.

2>ei(7T/2)(2n+1)+C.C. (39)

n
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For B,>w the dynamics is not saturated by third order Re i
terms ¢’'>0) and leaves the vicinity of the stationary solu-
tion. 0.0005
Analogously, the amplitude equations arising in the con-
text of the hard-mode instabilities Hy, HM;,, HM3, and =5 k T

the soft-mode instability SMcan be calculated. While the
hard-mode instability HM turns out to be supercritical
which admits a description by a complex Ginzburg-Landau- P(k)
equation, the instabilities HM and HM,,, are subcritical. 107
The soft-mode instability SM corresponds to a real
Ginzburg-Landau equation. As the sign of the third order
coefficient is positive for SM the bifurcation is subcritical 1010
and no pattern formation near the stationary state takes place.

To conclude, only instabilities &.=0 andk.= #/2 can
lead to stable patterns. The magnetization of the stationary 1915
state is perpendicular to the external magnetic field. Varia- 0 a4
tions arising from the instability contribute linearly M, .

k T[/2

FIG. 7. Eigenvalue spectrum and power spectrum Bat
=0.19798B,=0.99945 near poingc. While atgc the critical ei-
VI. AMPLITUDE TURBULENCE genvalue has a zero real part for all wave numbers, for slightly
NEAR A CODIMENSION-3 BIFURCATION smaller values oBy and B, the eigenvalue spectrum has a flat

maximum atk=0 and is negative fok= 7/2. The power spectrum

The Benjamin-Feir line and the degenerate-wave liNgeyeals broadband contributions in the center of the Brillouin zone
meet tangentially at the codimension-3 bifurcatigo. At (youghly for|k|< m/5) while to its boundark= /2 it slopes down.
this point, the diffusion coefficienb is purely imaginary |t has been computed by numerical integration of a set of 512 spins
while the Hopf coefficient vanishes; one findgs— — and  with periodic boundary conditions.
c3;—0. The real part of the critical eigenvalues is identically
zero for allk, while the imaginary part is nonzero. Therefore The parameter values of this bifurcation can be easily com-
all k modes become critical simultaneously and one expectguted: atgc HM3, W5 andB,— w=0 intersect. The corre-
that waves of all length scales contribute to the spatiotemposponding value ofl can be computed by equatitig7) and
ral dynamics. Such disorder phenomena cannot be studied g8). One finds
amplitude equations, which require separate critical wave
numbers. Agc a transition ofW; from supercritical to sub- B2—4J?=TB2 (40)
critical is involved; for parameter values where the real part
of an eigenvalue i& independent and positive, the dynamics gnd thus]= — B,(1—T'/2)/2=—0.4975, which agrees with
leaves the vicinity of the stationary state. the numerical valudFig. 4). This shows that the external

The energy distribution over the modes can be studied field must offset the exchange interaction, requiring the latter
numerically in the supercritical regioBo<Bgyc, B,<B,4c  to be relatively weak.
where the system is saturated by third order terms. In this
region the real part of the eigenvalue spectrum is very flat; it
has its positive maximum &= 0 and its negative minimum
atk= /2. The nonlinear terms depend on the wave number We have studied nonequilibrium pattern formation of a
and provide a coupling mechanism of the modes. Corredriven dissipative one dimensional antiferromagnet that ex-
spondingly, the spatial power spectrifig. 7) is maximal at  hibits instabilities with wavelengths of the order of the lattice
k=0 and exhibits broadband contributions fef< /5. The  constant. Classical continuum models of antiferromagnets
excitation of thek modes in this area indicates turbulent are based on the assumption that both sublattices are smooth
spatiotemporal dynamics even in the short length scale of thever such distances. But in the case of short wavelength
lattice constant. A histogram of the magnetization shows anstabilities this supposition breaks down. This necessitates a
Gaussian distribution. The eigenvalue spectrum and théully discrete description of the system.
power spectrum suggest an interpretation similar to chemical The noncollinear orientation of the sublattice magnetiza-
turbulence of Kuramoto-Shivashinsky equat[@4]: the en-  tions in the stationary state showing these instabilities is a
ergy is transported by nonlinear mode coupling from thecommon phenomenon in magnetism. In our system it is
long scales related to the homogeneous driving field to smattaused by the driving field balanced by a Landau-Lifshitz
scales where it is dissipated. But unlike this description oidamping. The resulting magnetization of the stationary states
spatially slow phase variations, at the instabitityall length  is perpendicular to the static magnetic field, whereas insta-
scales are involved. Such a globally critical bifurcation isbilities of this state lead to a magnetization parallel to zhe
known in two dimensions where a simultaneous instabilityaxis, effecting a Faraday rotation of light. Similar effects are
on the circlelk| =k, produce spatially turbulent structures if likely in weak ferromagnets, where canting of equilibrium

VII. CONCLUSIONS

the modes are coupled appropriatEdp). states is induced by anisotropic superexchange or a single
As a result of the simpl& dependance of the next neigh- ion anisotropy with alternating preferred axes.
bor coupling containing only terms-1,cos X, cos 4, Eq. We have detected a variety of instabilities by investigat-

(23), only three conditions are required for this bifurcation. ing the possible local codimension-one and -two bifurcations
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systematically. Short wavelength instabilities are encoun-
tered for relatively weak driving field8,~JY2I'Y? near
resonance. It is a generic result that there are instabilities in
the center and at the boundary of the Brillouin zone. The
latter bifurcations describe a coupling of the spatially homo-
geneous driving field to short wavelength excitatiomgtical
spin waveg. They occur when the static external field offsets
the exchange field.

To determine the physical status of spatial patterns above
these instability thresholds, a weakly nonlinear analysis has _ ,
been performed. A general scheme allowing the treatment of "'C: 8- A coordinate systerg; e, &, can be chosen in a way

one- and two-oscillator chains has been derived. Avoidingi‘ak""taSte'reog'r"’Iphic projection &5 into the complexe;-¢, plane

: . . . &; is the real axisg, is the imaginary axisyields real numbers: x
any unsystematic assumptions, a continuous amplltude equg- . 7 . .
- . - : . .. Tor the stationary state. In this caSgg are symmetrical to the,
tion for the bifurcating solutions emerges. It provides exp|ICItaXis

formulas for a complex Ginzburg-Landau equation that gov-

erns slow variations of an ideal solution. Its application to 2 1472
our system shows that stable long scale patterns are formed 20=(i ~I)B, A ~i(i-1)B, A +(i-T)B,zs
on short scale structures related to lattice splitting. Saturation 2 2
is also verified at a hard mode instability. The instabilities far 2_4 1472
from resonance are subcritical; therefore, they do not lead to —i A~ _ tZ) . i—T
A ¢ w, lwzZp+23(1—T)
stable nonequilibrium patterns. 2 2
An abrupt order/disorder transition results from a .
codimension-3 bifurcation in which a Benjamin-Feir line and X (za—2 )1+ZAZB (A2)
a degenerated wave instability line meet. All wave numbers A B 1+ 2575

are critical at this instability; numerical findings indicate a
direct transition to turbulentlike dynamics. The relatively wherez=(S;+iS,)/(1+S)); B¢,B, B, andw;,, o, are
7’ 1 ) 7]1 ) 7]1

low codimension of this bifurcation is again a generic resultysfined as the componentsBE Bye, + B,e, andw= we, in

in the case of nearest nelghbor cpupllng. ... _the directionse; ,e,, ande;, respectively. A corresponding
While the bifurcation scenario itself shows no qualltatlveequation holds foZB. Projecting in the direction of the total

changes for weak damping and weak driving fields, the defnagnetizatione ~S,+S5, one recognizes that the corre-

creasing diffusion constant restricts the validity of amp"tUdesponding comélex varialsles become located symmetrically

equations to long time and length scales. For that, films with, .., respect to the origin of the complex-e,-plane, i.e.

relatively high linewidths seem to be good candidates for the, _ Finally e,.e, can be determine%l o t’hatA,

observation of patterns. Anisotropic, quasi-one-dimensional®, , Z°° "R T L they axis. This reduces

materials might serve as the most simple prototypes for mag[- B ! . N

netooptic observations of stripe structures. he form of the fixed-point equation$S{=Sz=0) to

1—x?
ACKNOWLEDGMENTS 0= Qx?= Rx+ S 4xJ(i—T') el
+X

(A3)
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APPENDIX A o= ('_Z)Bf_'('_zr)Bv_'%_ % (A4)
Stereographic projection

The class of solutions of Eq1) pertaining to two homo- R=(i—-T)B,~iwy, (A5)
geneous sublattices can be described in terms of two inter-
acting spin oscillatorsS,=S,,,,S5=S,,.1- T0 determine
their stationary state€l3) and their stability properties we
make use of the conservation of modulus|8f,;s|=1 by 2 2
projecting the equation of motion

_ (i-D)Bg i(i-1)B, iw; o,
- - t5 -5 (A8)

Adding and subtracting the two equatio#s3) and dropping

—SA=SAX(B—w+ 2JS5) + I'SyX[SaX (B+2JS5)] the trivial solutionx=0 leads to
(A1)
0=0Qx*+S, (A7)
along some arbitrary directioe,=e;X<e, into the e;-e,
plane wheree; ande, are identified with the real and imagi- 2
nary axes of the complex number plane, respectively. 0=R+4J(i—-T) (A8)

8). This yields 1+x?%
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Obviously(A5) and(A8) force w, to be zero, i.e.¢; must be 1
perpendicular tom=we,. Introducing the Eulerian angles S'=5(B,~w,+I'By,
®,0, and¥ which connect the two coordinate systems, we
have® = 7r/2 and consequently 1
B,=Bocos¥ cos®+B,sin ¥, S'==5(B;mw;~I'B,),
B,=—Bgsin¥ cos®+B,cosV, )
R=(i—TI')B,. (A10)

- ) ] Equations(A7) and (A8) lead to three real equations
The quantitiesQ=Q’'+iQ"”, S=S'+iS” and R may be

written as

B —w ——TB, - ALl
Q’:E(B —w,—I'By)=———B O “14x2’ (ALD
2\BPy™ Wy 3 12 ¢
_y2
r : B~ ws)——=IB A12
=—1+X2(Bocos\1f cos®+B,sin¥), (Be “’5)1+X2 (A (A12)
Q"= Z(By— 0, +TB.) = —— (B,—wy) B 4\11_)(2 (A13)
== —w i — —w = — .
7 (B0 W e E e ¢ 1 x2
= ! [Bocos ¥ cos® + (B,— w)sin ¥], Then inserting the definitiongA9) in Egs. (Al1l), (Al2),
1+x2 (A13), we find for the three unknowrd, ¥, andx,
|
1-x2| 1-x2
—Bgcos®+I'B,—— |sin¥+| (B,— w)+I'Bycosd cos¥=0, (A14)
1+x2 1+x?
_y2 2
—I'Bgcos® — (B,— w) sinw+| I'B,—Bycos® cos¥=0 (Al15)
1+x2 1+x?
16J°m
coSP=1- ——. (A16)
0
|
Eliminating ¥ and®, we end up with the third order poly- 1—x2
nomial (13) of the square magnetizatiom=[(1—x2)/(1 B,=—4J ;0 =0. (A17)
+x2)]?=1(Ss+Sg)?; it depends only on the physical pa- 1+x

rametersBg,B,,w,J,I". It is often more convenient to use

the quantitiesQ’,Q",x,J,I" as independent parameters in-

stead ofBy,B,,w,J,I". This allows us to compute bifurca- Since w=Jw2+ wz,7+ wz,BZw=B§w§+ B,0,, and By
tions without solving Eq.(13). The physical quantities =./(B,+ BZ)Z—BZZ, we have three relations that can be in-
Bo.B,,@w can be expressed through these new parametergrpreted as effecting a transition from the original param-
using (A7) to expressS in terms ofQ, one may solve the etersB,,B,,w to a new set of paramete® ,Q",x leavingJ

four equationgA10) for B, ,B,,,w,, 0, in terms ofQ',Q" andT fixed, and vice versa.
andx as well. Noting that Eq(A8) implies Eq.(A13) and

w,=0 we get
APPENDIX B

!

!
Be=— ?(1"‘)(2)0)5: - ( T Q") (1+x2), Analytical calculation of bifurcations for weak damping

All local bifurcations are determined by the roots of the

! Q" characteristic pol ia22) \* 3 2
N a2 XA 2 polynomial22) A*+ KN+ Ko A+ KA +Kj
B)= (17X, (r Q"J(1=x7, =0 with
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Ko=16{(1—cogk)J*(1+T?)(1—g%cogk)
+x2)%cogK[Q"*(1+ %) —2Q'Q"T'(1-q)?
+2Q"T2q+Q'3(I'*+2q+I%g?)]
+x272(Q"+Q'T)*~2(Q"-Q'T)?]

+x4(Q'?+Q")%, (B1)
K,=8{(1+T?HI'JI*2[(1+ g% cosk—2]
+43x°[(Q"*=Q")r-2Q'Q"1}, (B2)
K,=4{J92+6I'>—cogk(I'?+2q+12g?)]
—2x3(Q"*-Q")}, (B3)
Ky=—8I'J. (B4)

If Ko=K;=0, two eigenvalues vanish simultaneously, while

for Ko=K;(K;—K,K3)+KoK53=0K;K;>0 one has one

zero and two imaginary eigenvalues. From these formulas

AMPLITUDE EQUATIONS FOR EXTENDED DISCRETE ...

1473

1-x?

—-T >

sin ¥+ cos¥=0

1-x2\?

! ( 1+x2) (89)
and consequently sit¥~1. As condition(13) that the solu-
tion be stationary reduces toB3—161°m=0 for
B,=w, we obtain Eq. (27 by using
Q'= —(FBg)/(1+x2)= —(I'B,)/2 and the bifurcation con-
dition (24).

Similarly one can evaluate the resonance p8ipt w of
bifurcation HM;. The leading terms of the conditidf, (K
—KyKj3)+ K0K§=O for two imaginary eigenvalues are

+X

Q'?—J3’m?=0. (B10)

Again insertingQ’ = —I'B,/2 andm= Bg/(lﬁJz) we get Eq.
(28).

APPENDIX C

Amplitude equations for general oscillator chains

one can obtain analytical expressions for local codimension- Multiple scale techniques for deriving amplitude equa-

two bifurcations ak.=0 in the limit of small damping. We
assume scaling laws for the driving fieB$~1T"#, the detun-
ing B,— w~TI'?, and the magnetizatiom~T'#. B, p, u are

tions have proved to be a powerful tool for the study of
pattern formation[20] in hydrodynamics, liquid crystals,
reaction-diffusion systems and magnetisi,7] in the

positive real numbers to be determined in the course of theveakly nonlinear regime beyond an instability threshold.

subsequent calculations. As the left-hand side of @§)
must be positive, one has to requite=23. By equating the
left- and right-hand sides of Eq22), one gets 2283
=min(48,4p,4,2u) + o or equivalently =min(23,2p).
We restrict ourselves to vanishing wave numbers 0. The
leading terms of the conditioki,=0 are always contained in

Q//Z(Q//2_4J2m)+4J2Q/2:O (BS)
while K;=0 vyields
2Q'Q"+2J°I'm+Q"I'=0. (B6)

For B=1,p=1, all terms of Eq(B6) are of order 2, while
Eq. (B5) is reduced taQ"2—4J°m=0. The polynomial(13)
is simplyI'2w?=(B3— 16J2m)m. From Eqs(B5) and(A16)
it follows that B5=32J2m,codd=13,cos¥=1. We get
sin ¥ =(B,— w)/(Bycos®)=2(B,— w)/B, and finally
equationg31), (32), that is, pointd,, in Fig. 2.
Analogously, the conditionK,(K;—K,K3)+KoK3=0
for two imaginary eigenvalues is reduced to
Q’ZQ"Z—ZJZFZQ"Zm—J“Fsz:O. (B?)
Again Egs.(B5) and (B7) can be fulfilled simultaneously
only for B=3,p=1 and together witiK,=0 this leads to
Egs.(32) and(33), which define poini,, in Fig. 2.

We now compute the intersection point of the bifurcation

W5 and the resonance linB,=w. From Egs.(A14) and
(A15) we find forB,— w=0

I'B 1-x B,COs @
= COS
14x2 0

(B8)

and

In this section we adapt the theoretical framework for
continuous systemp5,26—28§ to general spatially discrete
systems. Our derivation is performed in analogy to a recent
discussion of partial differential equatioh28]. In our con-
cept, each member of an oscillator chain is described by the
product of the eigenvector of a critical mode, a phase factor
depending on the lattice site and an amplitude that varies
slowly in space and time. The phase factor allows for short
wavelength excitations where neighboring oscillators move
out of phase. The slow variations of this ideal solution will
be governed by a partial differential equation for the ampli-
tude, which becomes smooth in the large aspect ratio. The
coefficients of this equation determine the dynamics above
threshold. We derive general expressions for these coeffi-
cients.

We treat a chain

P=[¢(1)---¢(n),¢(n+1), -, p(N)]

of N oscillators¢(n) = @,y each of which ha#! degrees of
freedom. The dynamics of thidM-dimensional system is
described by

b=LOATD), c

where

£:£(0)+ 625(2)4_ ce (C2

is a matrix. £(® controls the instability, i.e., it leads to a
marginally stable mode and? measures the distance to
threshold. V' comprises all nonlinearities. We split® in
MXM block matricesL; and its eigenvectorsb™ (k)

in  M-dimensional  subvectors CDE;g(k)qum(n,k)
=e""u(k): B
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0
0 L_2 L—l Lo Ll L2 A 0 0 eik(nfl)u(v)(k)
LOP(K) = 0O O P 1 Lo Ly L, 0 ekny((k) , (C3)
. 0 0 0 . L*Z L*l LO Ll L2 A eik(n+l)u(1/)(k)
0 O 0 0
|
wherelL ,,a#0 is the linear part of the coupling to theh 1
neighbor whileL, describes the linear dynamics of the os- (VD)= NE [(n)](n)] (C12
cillators ¢. Introducing L(k)=3,L.e'%* the eigenvalue 3
equation Near an instability with the critical eigenvalues!”(k
= — () — =1 i = (v
go)g(”)(k):)\(V)(k)g(”(k) (c4) ke) AN (—k.)=iw, and eigenvectors:=u'"< (k)

and ug :=ul*d(—k,), a perturbation scheme is set up by

can be written as expanding the solutio® or ¢ of Eq. (C1) in terms ofe:

LK) u® (k) =1 (k) uM(k), (C5) p(n)=ep(n) P +ep(n)@+e3p(n) @+ .. .

(C13
where () numerates the eigenvalues and vectors. The nonye require that the equations of motion that result by insert-
linearity is given as a series of itath powers: ing this ansatz are fulfilled in each order efseparately. In

order to avoid secular terms, the right-hand sides of the equa-
MP]= N, [P]. (ce)  tions arising in consecutive orders must be orthogonal to the
- m — — critical left eigenvector. The resulting solvability conditions

govern the dynamics of the amplitude of the modulated
Of course the nonlinearities depend on the system parantate. It is introduced explicitly by

eters too and may therefore be expandedAgs= M

+e?M?+ ... As the second term contributes to the fourth p(n)P=ue " OIA(T 7y, L ELEp, )G
order only, in the following only the first term will play a (C14
role. The most general quadratic term+2) may be writ- 54 depends on the scaled coordinates
ten as
7,=€'t,§,=€"n (C15
(NZ[E]M):&ZB C(p(n+a),¢(n+hB)), (CD it u=0,1,2 .... Infirst order the equation of motion is

the eigenvalue equation of the critical mode.

where thej component of the real vectd€®” is defined In second order the dynamics is governed by

explicitly as

d d (L
(__5(0))(1)(2):_ (&__UO))(I)(D + (N[ D])P.
o = — T, = — A
CE((n+ ), ¢(n+ B))=2, Cfifdi(n+a)gn(ntB). (C16
(C8  Considering the fact thap*)(n) depends or via the argu-
i ) ments of the amplitudé, application of£°—compare Eq.
These components satisfy the symmetry relation (C3—leads in first order to =
C*(u,v)=CP%u,u). (C9 (ﬁo‘b(l))ﬁ;
Similarly, cubic terms may be decomposed as . A @
=> Lyueke| A+ cag b gl(kentoct) ¢ c.
a 1
N ®]w= 2 D@t a)¢(nt£).d(n+7), | A
o (C10 =—iL ’(kc)uce'“‘C'”J””ct’a—‘fl +c.c. (C17
Df(¢(n+a),¢(n+B)d(n+7)) Multiplying Eg. (C16 with the critical left eigenvector
(... ekt ) thefollowing solvability condition

emerges:

=h|2m A58 dn(n+a)dy(n+ B),m(n+7y).  (CLD

oA JA
—i L' (k) |u.]— — u.)—=0. C18
A scalar product may be defined via [velL! (ko) C]&El (vd C)&Tl (€18
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Note that\[ @] is orthogonal to the left eigenvector. As the

2L . : (I)Eﬁ;:_2]“a|A|2_FbeZi(kanert)AZ_F;efzi(kCnerCt)
real part of the critical eigenvalue has a maximumkaf —

with the drift velocity

X(A*)Z

;) L7 (K
L(kc) » >(| ( C)

dw(k)
V=—— (C19
dk |, aA 1
c +Vl)ue (ken+wgt) g L( k)+|
w
it follows that ¢ ol (ve)
A IA*
oA JA HEa * a—i(ken+ wet)
X (iL"(—kg)+V1)ule e e +ee
iy Vf?fl (€29 ¢ 3
C24
With the abbreviation (€24
1 ik (o B)~(aB) . where we have omitted transient terms and terms of the form
Fa:m el Ac*Piy,,uzy, (C2)  of the first order solutior{C14).
«“p In the third order the equation of motion is
1
F e — elkc(a’+18)c(aﬁ) u u (1)
°L(2k) —2i w1 E e e} 9 _rolpe—_|[2_po]|p@
(C22 a = )= a = )=
. . (2)
and the inversion formula _[(i_ﬁ(o) o®| 4 DgpW
= = = -
—1 = ! —| O (vl C23 3 3
L), T o) ) TN PN D+ NP (C25)
the second order equation can be formally integrated: with the linear inhomogeneities
|
[(ﬁ (0) (2)”(1) ( 1 ) i(ken+ t)ﬁzA
—— L0 =i[iL' (k) +V1])| 57— iL’ (ko) +V1)ue'tkente +c.c+---, (C26
d & . aA . A (—i)? PPA
__E(O)) } =uge' ket oc) — —jL " (k )uge' ket ec) — + ——— | "(k )uee' k"t o) — +¢cc., (C2
|:((7t = il (n) Cc (97,2 ( C) C (752 2 ( C) 0,)52 ( 7)

where we have skipped nonresonant waves which are not proportiogldicig “<V. The contribution from quadratic terms is

(N PD()

Ecmmw (n+a), ¢<2><n+ﬁ>}+2 ClP P (n+a), sV (n+B)}

(C28

while the contribution from cubic terms is given by E@10. Multiplying Eq. (C25 with the critical left eigenvector
eliminates nonresonant terms on the right-hand side; we get the well-known Ginzburg-Landau equation for the amplitude

( i V— J )A A+D&2A+ |A|2A. (C29
—— —+r
aty  9&; H a€2
The bifurcation parameter is
(UclL(z)uc)
=— C30
H (Uc|uc) ( )
The linear termgC26) and (C27) are combined in the diffusion coefficient
D= 1d2)\— L'(ky)—iV1 ! L'(ky)—iV1 ! L"(k C31)
T ve|[L' (ko) —i ]m <V}[ (ko) —iV1]u _E(Ucl (ke)ue) (C3)
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and the drift velocity(C19). The Hopf coefficient ~  Sy(X)+Si(x—a)
_ m=T
(vl +2) (€32 00~ Six-a)
=— X)—Ss(x—a
(velue) I= - (D2)
has contributions from quadratic, and applying a second order Taylor expansionxata

=2na for Sy, ,=S.(x—a+2a) and an expansion at

=(2n+1)a for S,,_1=S,(Xx—2a) one gets
T=2> ekeaclaBlfy,, —2I 1 +2, elke2B-a)claB) . o ' - -
a,p ap —1=4JIXm+2Ja(mXm,—1X]l,)

xX{ug =T}, (C33 +2382(1 X Myt Ly X M),
as well as from cubic terms —m=2Ja(IX m),+2Ja2(MX My, + L, X 1).
(D3)
A:=3 > D@V ug,uc,ufteleTF=7  (C34  Rescaling the time with- 2Ja and settingn=m/a one finds
@By in the leading ordef15,16

Using all symmetries of the system, the general expressions i=2|><m—|><a—|
for the coefficients of the amplitude equation can be com- ax’
puted explicitly. If the system is inversion symmetrical, the
drift velocity vanishes ak.=0 and k.= . If the critical -0 | | 9 | D4
eigenvalue has a vanishing imaginary p@oft-mode, we m= 5( Xm)— XE : (D4)

obtain the real Ginzburg-Landau equation.
Instead of combinings,(x) at the site 2+1 with its left
neighbor Sy(x—a) at 2n in definition (D2), one could

APPENDIX D equally choose its right neighb®.(x+a) at site Zh+2.
Parity breaking and parity preserving One would then get a set of equations equivalent to(B4),
descriptions of 2-sublattice systems in which the first spatial derivatives have opposite sign. This

For application to antiferromagnets, the perturbationformal ambiguity leads to contradictory resultss], if non-

theory of Appendix C has to be generalized to chains wheré®'° va!ue; ofm are interpreted as an mcj|cat|on of a Ipcal
magnetization [15]. Therefore no physical conclusions

tgﬁ;&gﬂﬁ% |rr;]doiiessm?glirgig?garcehsgrégs Cr;i%seltéotr\:vsoor: etigit;) Osrg_hould be drawn from the presence of the first spatial deriva-
ing oscillators as one oscillator with twice as many degree IVeS. o . . . .
of freedom. This formal combination of pairs of oscillators . This ambiguity is avoided by the parity preserving defini-
however produces parity breaking terms that can lead to suffion
stantial complications and misinterpretations. In recent pa- So(X) + Sa(X)
pers this basic symmetry problem led to differing long wave- =S

Lo . X 2a
length approximation of one and the same classical discrete
spin chain described by the undamped Landau-Lifshitz equa- S,(X) — Se(X)
tion L= - (D5)
~S§=JSX(S_1+S+1), (D)  using an expansion of the continuous fieB(x) at
Xx=(2n+1)a to obtainS,, .. One obtaing9]

whereJ<0 is a real coupling parameter. In the ground state .
of model(D1) with J<0, neighboring spins are aligned an- L=2LXM,
tiparallel. The spins belong alternately to two collinear sub- ’

; . - ; . . 1 d
lattices. Skipping additional anisotropy and external field M= — L XL (D6)
terms and scaling away differing signs and constants, we 2 ax2

summarize the different continuum models(Bfl) given in ] ]

the literature. This limit is based on the hypothesis that, forThe sets(D6) and (D4) are equivalent; they are linked to
excitations of the ground state, each sublattice can be d&ach other by the transformation

scribed by slowly varying smooth functions.

1
The spin with the odd indexrg+1 is described by the m=M+ -L,,
continuous fieldS,(x) =S,,, 1 at the sitex=(2n+1)a. The 2
lattice constant is small and the functio®,(x) is taken to =L (D7)

be differentiable. The spins,,,,S;,+»> correspond to the
continuous fieldS, at x—a=2na andx+a=(2n+2)a, re- Consequently, Eq¥D6) have the symmetry of the original
spectively. Introducing the vectors system while the symmetry breaking terms of the macro-
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scopic equationgD4) are nothing but an avoidable compli-
cation. Macroscopically, finite values & or m both corre-
spond to zero magnetizations.

For the continuum descriptidi7,18

(D8)

it is assumed than is small. However, there is no reason for
this assumption becausen is driven by the terml
X (921 9x?)1. This approximation neglects all terms, retaining
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and specializing the general coupling functibnso as to
yield

for the equation of motion(D10) divides ¢ in two kinds of
oscillatorsa and 8. The specific choice df guarantees that
a oscillators interact only withB oscillators on adjacent sites

G(an,Bn+1:8n-1)

H(Bn,ans1,an-1)

5

Bn

(D11)

only the one that may be eliminated exactly by transformaand vice versa. Consequently, the chaindgobscillators is

tion (D7). Consequently, Eq.D8) is not equivalent to cor-
rect continuum limitsD6),(D4).

We will now transfer the formalism described in Appen-
dix C to chains with twalor more types of coupled oscilla-

decomposed in two mutually independent identical chains
with alternating oscillatorax and 8. These chains are gov-
erned by the same amplitude equation as the original
¢-chain.

tors on alternating lattice sites retaining the inversion sym- Conversely one can derive the amplitude equation for

metry. To obtain a formulation analogous to E5), we
start with a general chain of identical oscillatogs with
next-neighbor coupling

bSn=F(dn,Pn-1,bn+1)-

Decomposing the vectors in upper and lower parts as

|

(D9)

o)

D10
s, (D10)

o]

any chain of two alternating oscillators
(....Bn—1,2n, Bn+1:@n+2, -..) by combining the two
types of oscillatorsy,, and B,, to a single “superoscillator”
¢, (D10). This chain has the fornfD11) or (D9). The for-
malism of one-oscillator chains can now be applied.

The antiferromagnetic spin chain described in the text is
an example of a two-oscillator chain because the spin oscil-
lators of the two sublattices are influenced by different effec-
tive fields. It can be reduced to a one-oscillator chain before
the amplitude equation is derived.
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